Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0293894, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38381741

RESUMO

Modifications of mRNA, especially methylation of adenosine, have recently drawn much attention. The much rarer modification, 5-hydroxymethylation of cytosine (5hmC), is not well understood and is the subject of this study. Vertebrate Tet proteins are 5-methylcytosine (5mC) hydroxylases and catalyze the transition of 5mC to 5hmC in DNA. These enzymes have recently been shown to have the same function in messenger RNAs in both vertebrates and in Drosophila. The Tet gene is essential in Drosophila as Tet knock-out animals do not reach adulthood. We describe the identification of Tet-target genes in the embryo and larval brain by mapping one, Tet DNA-binding sites throughout the genome and two, the Tet-dependent 5hmrC modifications transcriptome-wide. 5hmrC modifications are distributed along the entire transcript, while Tet DNA-binding sites are preferentially located at the promoter where they overlap with histone H3K4me3 peaks. The identified mRNAs are preferentially involved in neuron and axon development and Tet knock-out led to a reduction of 5hmrC marks on specific mRNAs. Among the Tet-target genes were the robo2 receptor and its slit ligand that function in axon guidance in Drosophila and in vertebrates. Tet knock-out embryos show overlapping phenotypes with robo2 and both Robo2 and Slit protein levels were markedly reduced in Tet KO larval brains. Our results establish a role for Tet-dependent 5hmrC in facilitating the translation of modified mRNAs primarily in cells of the nervous system.


Assuntos
Citosina , Dioxigenases , Animais , Citosina/metabolismo , Drosophila/genética , Drosophila/metabolismo , Metilação de DNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Orientação de Axônios , Proteínas de Ligação a DNA/metabolismo , 5-Metilcitosina/metabolismo , DNA/metabolismo , Dioxigenases/genética
2.
Res Sq ; 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36824980

RESUMO

Modifications of mRNA, especially methylation of adenosine, have recently drawn much attention. The much rarer modification, 5-hydroxymethylation of cytosine (5hmC), is not well understood and is the subject of this study. Vertebrate Tet proteins are 5-methylcytosine (5mC) hydroxylases enzymes catalyzing the transition of 5mC to 5hmC in DNA and have recently been shown to have the same function in messenger RNAs in both vertebrates and in Drosophila. The Tet gene is essential in Drosophila because Tet knock-out animals do not reach adulthood. We describe the identification of Tet-target genes in the embryo and larval brain by determining Tet DNA-binding sites throughout the genome and by mapping the Tet-dependent 5hmrC modifications transcriptome-wide. 5hmrC-modified sites can be found along the entire transcript and are preferentially located at the promoter where they overlap with histone H3K4me3 peaks. The identified mRNAs are frequently involved in neuron and axon development and Tet knock-out led to a reduction of 5hmrC marks on specific mRNAs. Among the Tet-target genes were the robo2 receptor and its slit ligand that function in axon guidance in Drosophila and in vertebrates. Tet knock-out embryos show overlapping phenotypes with robo2 and are sensitized to reduced levels of slit. Both Robo2 and Slit protein levels were markedly reduced in Tet KO larval brains. Our results establish a role for Tet-dependent 5hmrC in facilitating the translation of modified mRNAs, primarily in developing nerve cells.

3.
bioRxiv ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36711932

RESUMO

Modifications of mRNA, especially methylation of adenosine, have recently drawn much attention. The much rarer modification, 5-hydroxymethylation of cytosine (5hmC), is not well understood and is the subject of this study. Vertebrate Tet proteins are 5-methylcytosine (5mC) hydroxylases and catalyze the transition of 5mC to 5hmC in DNA. These enzymes have recently been shown to have the same function in messenger RNAs in both vertebrates and in Drosophila. The Tet gene is essential in Drosophila as Tet knock-out animals do not reach adulthood. We describe the identification of Tet-target genes in the embryo and larval brain by mapping one, Tet DNA-binding sites throughout the genome and two, the Tet-dependent 5hmrC modifications transcriptome-wide. 5hmrC modifications are distributed along the entire transcript, while Tet DNA-binding sites are preferentially located at the promoter where they overlap with histone H3K4me3 peaks. The identified mRNAs are preferentially involved in neuron and axon development and Tet knock-out led to a reduction of 5hmrC marks on specific mRNAs. Among the Tet-target genes were the robo2 receptor and its slit ligand that function in axon guidance in Drosophila and in vertebrates. Tet knock-out embryos show overlapping phenotypes with robo2 and both Robo2 and Slit protein levels were markedly reduced in Tet KO larval brains. Our results establish a role for Tet-dependent 5hmrC in facilitating the translation of modified mRNAs primarily in cells of the nervous system.

4.
J Pediatr Genet ; 12(4): 312-317, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38162156

RESUMO

Wolf-Hirschhorn syndrome (WHS) is a contiguous gene deletion condition. The WHS core phenotype includes developmental delays, intellectual disabilities, seizures, and distinctive facial features. Various other comorbidities have also been reported, such as hearing loss, heart defects, as well as eye problems and kidney problems. In this report, we present a case of WHS accompanied by hyperparathyroidism and hypercalcemia, which has not been previously reported. A girl was born at 37 weeks of gestation by vaginal delivery. She was small for the gestational age (2,045 g) and admitted to neonatal intensive care unit. She had typical WHS facial features and was found to have bilateral small kidneys associated with transient metabolic acidosis and renal insufficiency. She had right-sided sensorineural hearing loss, a small atrial septal defect, and colpocephaly and hypoplasia of corpus callosum. She had a single seizure which was well controlled with an oral antiepileptic medication. Cytogenetic studies demonstrated a large terminal chromosome 4p deletion (21.4 Mb) and 4p duplication (2.1 Mb) adjacent to the deletion. A unique finding in this patient is her consistently elevated levels of parathyroid hormone and serum calcium, suggesting hyperparathyroidism. We present this rare case along with a review of the literature and hope to draw an attention to a potential relationship between WHS and hyperparathyroidism.

5.
Oncotarget ; 11(47): 4411-4420, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33315966

RESUMO

Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic neoplasm that exhibits myelodysplastic and myeloproliferative characteristics with heterogeneous clinical and pathological features. There are limited publications on the ethnic and racial disparity of cytogenetics and genomics in CMML patients. This study aims to define the cytogenetic and molecular landscape in Hispanic CMML patients from Puerto Rico and explore its possible clinical significance. One hundred and eleven (111) Hispanic CMML patients from Puerto Rico were diagnosed in our institute from 2009 to 2018. Karyotypes were available in one hundred and seven (107) patients. Seventeen (17) patients had abnormal karyotypes (17/107, 16%). Compared to previously published data, Hispanic CMML patients in this study had significantly lower rates of overall cytogenetic abnormalities (16% vs 27-28%, p < 0.05) and trisomy 8 (2% vs 7%, p < 0.05). Among one hundred and eleven (111) Hispanic CMML patients, 40-gene myeloid molecular profile tests were performed in fifty-six (56) CMML patients. Gene mutations were identified in fifty-four (54) patients (96%). The most frequent mutated genes were: TET2, SRSF2, ASXL1, ZRSR2, DNMT3A, NRAS, CBL, and RUNX1. Twenty-nine (29) out of fifty-six (56) patients (29/56, 52%) had mutated TET2/wild type ASXL1 (muTET2/wtASXL1). Previous studies indicated that mutated ASXL1, DNMT3A, NRAS, RUNX1, and SETBP1 may associate with an unfavorable prognosis and muTET2/wtASXL1 may associate with a favorable prognosis in CMML patients. Compared to previously published data, Hispanic CMML patients from Puerto Rico in this study had significantly lower mutation rates in ASXL1 and SETBP1, and a higher rate of muTET2/wtASXL1. The findings raise the possibility of a favorable prognosis in Hispanic CMML patients.

6.
Life (Basel) ; 10(11)2020 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-33233438

RESUMO

Long non-coding RNAs (lncRNAs) are suggested to play an important role in the sperm biological processes. We performed de novo transcriptome assembly to characterize lncRNAs in spermatozoa, and to investigate the role of the potential target genes of the differentially expressed lncRNAs (DElncRNAs) in sperm freezability. We detected approximately 4007 DElncRNAs, which were differentially expressed in spermatozoa from boars classified as having good and poor semen freezability (GSF and PSF, respectively). Most of the DElncRNAs were upregulated in boars of the PSF group and appeared to significantly affect the sperm's response to the cryopreservation conditions. Furthermore, we predicted that the potential target genes were regulated by DElncRNAs in cis or trans. It was found that DElncRNAs of both freezability groups had potential cis- and trans-regulatory effects on different protein-coding genes, such as COX7A2L, TXNDC8 and SOX-7. Gene Ontology (GO) enrichment revealed that the DElncRNA target genes are associated with numerous biological processes, including signal transduction, response to stress, cell death (apoptosis), motility and embryo development. Significant differences in the de novo assembled transcriptome expression profiles of the DElncRNAs between the freezability groups were confirmed by quantitative real-time PCR analysis. This study reveals the potential effects of protein-coding genes of DElncRNAs on sperm functions, which could contribute to further research on their relevance in semen freezability.

7.
FASEB J ; 34(1): 1304-1318, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914691

RESUMO

Phosphatase and tensin homolog located on chromosome 10 (PTEN) is a tumor suppressor gene and one of the most frequently mutated/deleted genes in human prostate cancer (PCa). However, how PTEN deletion would impact the epigenome and transcriptome alterations remain unknown. This hypothesis was tested in a prostate-specific PTEN-/- (KO) mouse prostatic adenocarcinoma model through DNA methyl-Seq and RNA-Seq analyses. Examination of cancer genomic datasets revealed that PTEN is expressed at lower levels in PTEN-deleted tumor samples than in normal solid tissue samples. Methylome and transcriptome profiling identified several inflammatory responses and immune response signaling pathways, including NF-kB signaling, IL-6 signaling, LPS/IL-1-mediated inhibition of RXR Function, PI3K in B lymphocytes, iCOS-iCOSL in T helper cells, and the role of NFAT in regulating the immune response, were affected by PTEN deletion. Importantly, a small subset of genes that showed DNA hypermethylation or hypomethylation was correlated with decreased or increased gene expression including CXCL1. quantitative polymerase chain reaction analyses of representative genes validated the RNA-Seq results. Histopathological examinations showed that the severity of prostatic intraepithelial neoplasia and inflammation development gradually increased as PTEN null mice aged. Collectively, these findings suggest that loss of PTEN drives global changes in DNA CpG methylation and transcriptomic gene expression and highly associated with several inflammatory and immune molecular pathways during PCa development. These biomarkers could be valuable molecular targets for cancer drug discovery and development against PCa.


Assuntos
Metilação de DNA , DNA de Neoplasias/metabolismo , Epigenoma , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , PTEN Fosfo-Hidrolase/deficiência , Transcriptoma , Animais , DNA de Neoplasias/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Estadiamento de Neoplasias , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata
8.
J Biol Rhythms ; 35(2): 134-144, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31878828

RESUMO

The circadian clock controls daily activities at the cellular and organismic level, allowing an organism to anticipate incoming stresses and to use resources accordingly. The circadian clock has therefore been considered a fitness trait in multiple organisms. However, the mechanism of how circadian clock variation influences organismal reproductive fitness is still not well understood. Here we describe habitat-specific clock variation (HSCV) of asexual reproduction in Neurospora discreta, a species that is adapted to 2 different habitats, under or above tree bark. African (AF) N. discreta strains, whose habitat is above the tree bark in light-dark (LD) conditions, display a higher rhythmicity index compared with North American (NA) strains, whose habitat is under the tree bark in constant dark (DD). Although AF-type strains demonstrated an overall fitness advantage under LD and DD conditions, NA-type strains exhibit a habitat-specific fitness advantage in DD over the LD condition. In addition, we show that allelic variation of the clock-controlled gene, Ubiquinol cytochrome c oxidoreductase (NEUDI_158280), plays a role in HSCV by modulating cellular reactive oxygen species levels. Our results demonstrate a mechanism by which local adaptation involving circadian clock regulation influences reproductive fitness.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano , Ecossistema , Aptidão Genética , Neurospora/fisiologia , Reprodução Assexuada/genética , Adaptação Fisiológica , Alelos , Proteínas CLOCK/genética , Relógios Circadianos/fisiologia , Neurospora/genética , Fotoperíodo
9.
Vet Sci ; 6(2)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934933

RESUMO

Global gene expression in liver transcriptome varies among cattle breeds. The present investigation was aimed to identify the differentially expressed genes (DEGs), metabolic gene networks and metabolic pathways in bovine liver transcriptome of young bulls. In this study, we comparatively analyzed the bovine liver transcriptome of dairy (Polish Holstein Friesian (HF); n = 6), beef (Hereford; n = 6), and dual purpose (Polish-Red; n = 6) cattle breeds. This study identified 895, 338, and 571 significant (p < 0.01) differentially expressed (DE) gene-transcripts represented as 745, 265, and 498 hepatic DE genes through the Polish-Red versus Hereford, Polish-HF versus Hereford, and Polish-HF versus Polish-Red breeds comparisons, respectively. By combining all breeds comparisons, 75 hepatic DE genes (p < 0.01) were identified as commonly shared among all the three breed comparisons; 70, 160, and 38 hepatic DE genes were commonly shared between the following comparisons: (i) Polish-Red versus Hereford and Polish-HF versus Hereford; (ii) Polish-Red versus Hereford and Polish-HF versus Polish-Red; and (iii) Polish-HF versus Hereford and Polish-HF versus Polish-Red, respectively. A total of 440, 82, and 225 hepatic DE genes were uniquely observed for the Polish-Red versus Hereford, Polish-HF versus Hereford, and Polish-Red versus Polish-HF comparisons, respectively. Gene ontology (GO) analysis identified top-ranked enriched GO terms (p < 0.01) including 17, 16, and 31 functional groups and 151, 61, and 140 gene functions that were DE in all three breed liver transcriptome comparisons. Gene network analysis identified several potential metabolic pathways involved in glutamine family amino-acid, triglyceride synthesis, gluconeogenesis, p38MAPK cascade regulation, cholesterol biosynthesis (Polish-Red versus Hereford); IGF-receptor signaling, catecholamine transport, lipoprotein lipase, tyrosine kinase binding receptor (Polish-HF versus Hereford), and PGF-receptor binding, (Polish-HF versus Polish-Red). Validation results showed that the relative expression values were consistent to those obtained by RNA-seq, and significantly correlated between the quantitative reverse transcription PCR (RT-qPCR) and RNA-seq (Pearson's r > 0.90). Our results provide new insights on bovine liver gene expressions among dairy versus dual versus beef breeds by identifying the large numbers of DEGs markers submitted to NCBI gene expression omnibus (GEO) accession number GSE114233, which can serve as useful genetic tools to develop the gene assays for trait-associated studies as well as, to effectively implement in genomics selection (GS) cattle breeding programs in Poland.

10.
Plant J ; 97(4): 673-682, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30417446

RESUMO

Bulked segregant analysis (BSA) is used to identify existing or induced variants that are linked to phenotypes. Although it is widely used in Arabidopsis and rice, it remains challenging for crops with large genomes, such as maize. Moreover, analysis of huge data sets can present a bottleneck linking phenotypes to their molecular basis, especially for geneticists without programming experience. Here, we identified two genes of maize defective kernel mutants with newly developed analysis pipelines that require no programing skills and should be applicable to any large genome. In the 1970s, Neuffer and Sheridan generated a chemically induced defective kernel (dek) mutant collection with the potential to uncover critical genes for seed development. To locate such mutations, the dek phenotypes were introgressed into two inbred lines to take advantage of maize haplotype variations and their sequenced genomes. We generated two pipelines that take fastq files derived from next-generation (nextGen) paired-end DNA and cDNA sequencing as input, call on several well established and freely available genomic analysis tools to call SNPs and INDELs, and generate lists of the most likely causal mutations together with variant index plots to locate the mutation to a specific sequence position on a chromosome. The pipelines were validated with a known strawberry mutation before cloning the dek mutants, thereby enabling phenotypic analysis of large genomes by next-generation sequencing.


Assuntos
Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fenótipo , Análise de Sequência de DNA/métodos , Zea mays/genética
11.
Genetics ; 207(4): 1361-1370, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28986443

RESUMO

serine threonine kinase1 (stk1) and serine threonine kinase2 (stk2) are closely related maize paralogous genes predicted to encode serine/threonine protein kinases. Pollen mutated in stk1 or stk2 competes poorly with normal pollen, pointing to a defect in pollen tube germination or growth. Both genes are expressed in pollen, but not in most other tissues. In germination media, STK1 and STK2 fluorescent fusion proteins localize to the plasma membrane of the vegetative cell. RNA-seq experiments identified 534 differentially expressed genes in stk1 mutant pollen relative to wild type. Gene ontology (GO) molecular functional analysis uncovered several differentially expressed genes with putative ribosome initiation and elongation functions, suggesting that stk1 might affect ribosome function. Of the two paralogs, stk1 may play a more important role in pollen development than stk2, as stk2 mutations have a smaller pollen transmission effect. However, stk2 does act as an enhancer of stk1 because the double mutant combination is only infrequently pollen-transmitted in double heterozygotes. We conclude that the stk paralogs play an essential role in pollen development.


Assuntos
Pólen/genética , Proteínas Serina-Treonina Quinases/genética , Zea mays/genética , Sequência de Aminoácidos/genética , Regulação da Expressão Gênica de Plantas , Germinação/genética , Mutação , Pólen/crescimento & desenvolvimento , Polinização/genética , Homologia de Sequência de Aminoácidos , Zea mays/crescimento & desenvolvimento
12.
Hum Mutat ; 38(11): 1491-1499, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28703315

RESUMO

Lysosomes are membrane-bound, acidic eukaryotic cellular organelles that play important roles in the degradation of macromolecules. Mutations that cause the loss of lysosomal protein function can lead to a group of disorders categorized as the lysosomal storage diseases (LSDs). Suspicion of LSD is frequently based on clinical and pathologic findings, but in some cases, the underlying genetic and biochemical defects remain unknown. Here, we performed whole-exome sequencing (WES) on 14 suspected LSD cases to evaluate the feasibility of using WES for identifying causal mutations. By examining 2,157 candidate genes potentially associated with lysosomal function, we identified eight variants in five genes as candidate disease-causing variants in four individuals. These included both known and novel mutations. Variants were corroborated by targeted sequencing and, when possible, functional assays. In addition, we identified nonsense mutations in two individuals in genes that are not known to have lysosomal function. However, mutations in these genes could have resulted in phenotypes that were diagnosed as LSDs. This study demonstrates that WES can be used to identify causal mutations in suspected LSD cases. We also demonstrate cases where a confounding clinical phenotype may potentially reflect more than one lysosomal protein defect.


Assuntos
Exoma , Estudos de Associação Genética , Predisposição Genética para Doença , Doenças por Armazenamento dos Lisossomos/diagnóstico , Doenças por Armazenamento dos Lisossomos/genética , Adolescente , Adulto , Alelos , Substituição de Aminoácidos , Criança , Mapeamento Cromossômico , Ativação Enzimática , Feminino , Marcadores Genéticos , Genômica/métodos , Genótipo , Humanos , Mutação com Perda de Função , Masculino , Anotação de Sequência Molecular , Mutação , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Sequenciamento do Exoma
13.
Genome Announc ; 5(10)2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28280013

RESUMO

Porphyromonas gingivalis is an oral opportunistic pathogen. Sequenced P. gingivalis laboratory strains display limited diversity in antigens that modulate host responses. Here, we present the genome sequence of A7A1-28, a strain possessing atypical fimbrillin and capsule types, with a single contig of 2,249,024 bp and a G+C content of 48.58%.

14.
PLoS One ; 12(2): e0172687, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28234981

RESUMO

BACKGROUND: RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver tissue of young bulls of the Polish Red, Polish Holstein-Friesian (HF) and Hereford breeds, and to understand the genomic variation in the three cattle breeds that may reflect differences in production traits. RESULTS: The RNA-seq experiment on bovine liver produced 107,114,4072 raw paired-end reads, with an average of approximately 60 million paired-end reads per library. Breed-wise, a total of 345.06, 290.04 and 436.03 million paired-end reads were obtained from the Polish Red, Polish HF, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed that 81.35%, 82.81% and 84.21% of the mapped sequencing reads were properly paired to the Polish Red, Polish HF, and Hereford breeds, respectively. This study identified 5,641,401 SNPs and insertion and deletion (indel) positions expressed in the bovine liver with an average of 313,411 SNPs and indel per young bull. Following the removal of the indel mutations, a total of 195,3804, 152,7120 and 205,3184 raw SNPs expressed in bovine liver were identified for the Polish Red, Polish HF, and Hereford breeds, respectively. Breed-wise, three highly reliable breed-specific SNP-databases (SNP-dbs) with 31,562, 24,945 and 28,194 SNP records were constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM) SNP genotyping assay. The comprehensive QTL/CG analysis of 110 QTL/CG with RNA-seq data identified 20 monomorphic SNP hit loci (CARTPT, GAD1, GDF5, GHRH, GHRL, GRB10, IGFBPL1, IGFL1, LEP, LHX4, MC4R, MSTN, NKAIN1, PLAG1, POU1F1, SDR16C5, SH2B2, TOX, UCP3 and WNT10B) in all three cattle breeds. However, six SNP loci (CCSER1, GHR, KCNIP4, MTSS1, EGFR and NSMCE2) were identified as highly polymorphic among the cattle breeds. CONCLUSIONS: This study identified breed-specific SNPs with greater SNP ratio and excellent mapping coverage, as well as monomorphic and highly polymorphic putative SNP loci within QTL/CGs of bovine liver tissue. A breed-specific SNP-db constructed for bovine liver yielded nearly six million SNPs. In addition, a KASPTM SNP genotyping assay, as a reliable cost-effective method, successfully validated the breed-specific putative SNPs originating from the RNA-seq experiments.


Assuntos
Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável , RNA/genética , Transcriptoma , Animais , Cruzamento , Bovinos , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL , Fígado/metabolismo , Masculino , Filogenia , RNA/metabolismo
15.
Genome Announc ; 5(2)2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28082501

RESUMO

Porphyromonas gingivalis is associated with both oral and systemic diseases. Strain-specific P. gingivalis invasion phenotypes do not reliably predict disease presentation during in vivo studies. Here, we present the genome sequence of 381, a common laboratory strain, with a single contig of 2,378,872 bp and a G+C content of 48.36%.

16.
PLoS One ; 11(9): e0161370, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27606429

RESUMO

Examination of bovine pituitary gland transcriptome by strand-specific RNA-seq allows detection of putative single nucleotide polymorphisms (SNPs) within potential candidate genes (CGs) or QTLs regions as well as to understand the genomics variations that contribute to economic trait. Here we report a breed-specific model to successfully perform the detection of SNPs in the pituitary gland of young growing bulls representing Polish Holstein-Friesian (HF), Polish Red, and Hereford breeds at three developmental ages viz., six months, nine months, and twelve months. A total of 18 bovine pituitary gland polyA transcriptome libraries were prepared and sequenced using the Illumina NextSeq 500 platform. Sequenced FastQ databases of all 18 young bulls were submitted to NCBI-SRA database with NCBI-SRA accession numbers SRS1296732. For the investigated young bulls, a total of 113,882,3098 raw paired-end reads with a length of 156 bases were obtained, resulting in an approximately 63 million paired-end reads per library. Breed-wise, a total of 515.38, 215.39, and 408.04 million paired-end reads were obtained for Polish HF, Polish Red, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed 93.04%, 94.39%, and 83.46% of the mapped sequencing reads were properly paired to the Polish HF, Polish Red, and Hereford breeds, respectively. Constructed breed-specific SNP-db of three cattle breeds yielded at 13,775,885 SNPs. On an average 765,326 breed-specific SNPs per young bull were identified. Using two stringent filtering parameters, i.e., a minimum 10 SNP reads per base with an accuracy ≥ 90% and a minimum 10 SNP reads per base with an accuracy = 100%, SNP-db records were trimmed to construct a highly reliable SNP-db. This resulted in a reduction of 95,7% and 96,4% cut-off mark of constructed raw SNP-db. Finally, SNP discoveries using RNA-Seq data were validated by KASP™ SNP genotyping assay. The comprehensive QTLs/CGs analysis of 76 QTLs/CGs with RNA-seq data identified KCNIP4, CCSER1, DPP6, MAP3K5 and GHR CGs with highest SNPs hit loci in all three breeds and developmental ages. However, CAST CG with more than 100 SNPs hits were observed only in Polish HF and Hereford breeds.These findings are important for identification and construction of novel tissue specific SNP-db and breed specific SNP-db dataset by screening of putative SNPs according to QTL db and candidate genes for bovine growth and reproduction traits, one can develop genomic selection strategies for growth and reproductive traits.


Assuntos
Hipófise/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de RNA/métodos , Animais , Cruzamento , Bovinos , Perfilação da Expressão Gênica , Estudos de Associação Genética , Genoma , Técnicas de Genotipagem , Funções Verossimilhança , Especificidade de Órgãos/genética , Filogenia , Locos de Características Quantitativas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Alinhamento de Sequência , Transcriptoma/genética
17.
Proc Natl Acad Sci U S A ; 113(29): 7949-56, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27354512

RESUMO

Haplotype variation not only involves SNPs but also insertions and deletions, in particular gene copy number variations. However, comparisons of individual genomes have been difficult because traditional sequencing methods give too short reads to unambiguously reconstruct chromosomal regions containing repetitive DNA sequences. An example of such a case is the protein gene family in maize that acts as a sink for reduced nitrogen in the seed. Previously, 41-48 gene copies of the alpha zein gene family that spread over six loci spanning between 30- and 500-kb chromosomal regions have been described in two Iowa Stiff Stalk (SS) inbreds. Analyses of those regions were possible because of overlapping BAC clones, generated by an expensive and labor-intensive approach. Here we used single-molecule real-time (Pacific Biosciences) shotgun sequencing to assemble the six chromosomal regions from the Non-Stiff Stalk maize inbred W22 from a single DNA sequence dataset. To validate the reconstructed regions, we developed an optical map (BioNano genome map; BioNano Genomics) of W22 and found agreement between the two datasets. Using the sequences of full-length cDNAs from W22, we found that the error rate of PacBio sequencing seemed to be less than 0.1% after autocorrection and assembly. Expressed genes, some with premature stop codons, are interspersed with nonexpressed genes, giving rise to genotype-specific expression differences. Alignment of these regions with those from the previous analyzed regions of SS lines exhibits in part dramatic differences between these two heterotic groups.


Assuntos
Dosagem de Genes , Genes de Plantas , Zea mays/genética , DNA de Plantas/genética , Genoma de Planta , Haplótipos , Análise de Sequência de DNA/métodos
18.
Proc Natl Acad Sci U S A ; 113(12): 3395-400, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26951647

RESUMO

We report cell-to-cell movement of mitochondria through a graft junction. Mitochondrial movement was discovered in an experiment designed to select for chloroplast transfer from Nicotiana sylvestris into Nicotiana tabacum cells. The alloplasmic N. tabacum line we used carries Nicotiana undulata cytoplasmic genomes, and its flowers are male sterile due to the foreign mitochondrial genome. Thus, rare mitochondrial DNA transfer from N. sylvestris to N. tabacum could be recognized by restoration of fertile flower anatomy. Analyses of the mitochondrial genomes revealed extensive recombination, tentatively linking male sterility to orf293, a mitochondrial gene causing homeotic conversion of anthers into petals. Demonstrating cell-to-cell movement of mitochondria reconstructs the evolutionary process of horizontal mitochondrial DNA transfer and enables modification of the mitochondrial genome by DNA transmitted from a sexually incompatible species. Conversion of anthers into petals is a visual marker that can be useful for mitochondrial transformation.


Assuntos
Movimento Celular , Mitocôndrias/fisiologia , Fenômenos Fisiológicos Vegetais , DNA Mitocondrial/genética , Plastídeos
19.
Genome Announc ; 3(6)2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26543127

RESUMO

Porphyromonas gingivalis is associated with oral and systemic diseases. Strain-specific P. gingivalis invasion phenotypes have been correlated with disease presentation in infected laboratory animals. Here, we present the genome sequence of AJW4, a minimally invasive strain, with a single contig of 2,372,492 bp and a G+C content of 48.27%.

20.
Genome Announc ; 3(5)2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26404590

RESUMO

Porphyromonas gingivalis is strongly associated with periodontitis. P. gingivalis strain trafficking and tissue homing differ widely, even among presumptive closely related strains, such as W83 and A7436. Here, we present the genome sequence of A7436 with a single contig of 2,367,029 bp and a G+C content of 48.33%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...